If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1x^2+0+-x=0
We add all the numbers together, and all the variables
x^2-1x=0
a = 1; b = -1; c = 0;
Δ = b2-4ac
Δ = -12-4·1·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-1}{2*1}=\frac{0}{2} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+1}{2*1}=\frac{2}{2} =1 $
| 9(3v-11)=-7(1-3v)+6v | | 9x-81=-54 | | -10+9x=26 | | -5+10x=55 | | 2x-324=0 | | 7x=15+6x | | -2(y-6)=0 | | .25(2c+5)=20 | | 2x-2500=0 | | 3/4x-6=x/8+4 | | 3(x-9)+7=-2 | | 190=15c | | 1000000/12=2^x | | S=2πr | | (2x+10)+30=180 | | s^2=8+s(5-8s) | | 3x^2+6-8=0 | | 100000/12=2^x | | Y=43+-1.5y | | 9/16=3/4(x-1/4) | | 15+9u=96 | | -72-12b=-8b+8b+96 | | 3/2x+5=1/9x | | 40(0.9–x)=5x | | 8y+1=7y-4 | | y^2+10y+28=0 | | -6x-15=4x=35 | | 4/6n=13 | | 9(y-8)=8y-3 | | x^2+x+1=4 | | (4^3x)^7=4^8x+54/4^5x | | x-1/4=4 |